DOI:10.3969/j.issn.1005-2895.2021.05.009

## $B_4C_p$ / 6061 AI 复合材料的热变形组织演变研究

侯召堂<sup>1</sup>,王思佳<sup>2</sup>,吴晓俊<sup>1</sup>,成小乐<sup>2\*</sup>,李滋阳<sup>2</sup>

(1. 西安热工研究院有限公司,陕西西安 710054; 2. 西安工程大学 机电工程学院,陕西西安 710048)

摘 要:为探究 B<sub>4</sub>C<sub>p</sub>/6061Al 复合材料的热变形组织演变规律,进一步优化材料的性能,课题组采用控制变量法,利用热 压缩试验分别探究了在不同热变形条件(变形温度、应变速率及应变量)下 B<sub>4</sub>C<sub>p</sub>/6061Al 复合材料的微观组织特征。结 果表明:变形温度越高,6061 铝基体内部原子的热激活能增大,动态再结晶的形核速度提升,晶粒尺寸也不断增大;随着 应变速率增大,复合材料发生动态再结晶的时间缩短,阻碍了晶粒的生长,不利于 6061 铝基体发生动态再结晶;应变量 增加,复合材料的流变应力增大,提高了 6061 铝基体动态再结晶的形核效率。在不损害复合材料塑性的前提下提高强 度和韧性的方法,对改善材料塑性成形能力和优化成形工艺(如轧制、锻造、挤压等)有借鉴意义。

关键 词:B4Cp/6061Al复合材料;控制变量法;热变形;动态再结晶

中图分类号:TG148 文献标志码:A 文章编号:1005-2895(2021)05-0047-06

### Research on Microstructure Evolution of $B_4C_p/6061Al$ Composite during Hot Deformation

HOU Zhaotang<sup>1</sup>, WANG Sijia<sup>2</sup>, WU Xiaojun<sup>1</sup>, CHENG Xiaole<sup>2\*</sup>, LI Ziyang<sup>2</sup>

(1. Xi'an Thermal Power Research Institute Co. , Ltd, Xi'an 710054, China;

2. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an 710048, China)

Abstract: In order to investigate the evolution law of thermal deformation microstructure of  $B_4 C_p/6061$  Al composites and further optimize the properties of the materials, the microstructure characteristics of  $B_4 C_p/6061$  Al composites under different thermal deformation conditions (deformation temperature, strain rate and strain level) were studied by using hot compression tests and control variable method. The research show that with the increase of the deformation temperature, the thermal activation energy inside the 6061 aluminum matrix materials increases, the nucleation efficiency and the grain size of the dynamic recrystallization also increases. The time for dynamic recrystallization of the 6061 aluminum matrix material increases with the increase of strain, which improves the nucleation efficiency of the 6061 aluminum matrix materials dynamic recrystallization. The method that enhances strength and toughness of the composites without damages of the plasticity has important reference significance for improving the plastic forming ability of materials and optimizing the forming process ( such as rolling, forging, extrusion, etc. ).

Keywords: B<sub>4</sub>C<sub>P</sub>/6061Al composites; control variable method; hot deformation; dynamic recrystallization

6×××系铝合金集诸多优异特性于一体,其塑性 成型性好、耐腐蚀、熔铸性好,且具备可热处理强化等 特性,被广泛应用于交通运输、航空航天、军事装备及 建筑等领域<sup>[14]</sup>。碳化硼作为特种陶瓷中极具代表性的一种结构陶瓷,具有熔点高、抗弯强度高、硬度高、密度小以及耐磨性和耐酸碱性好等优点<sup>[56]</sup>。将碳化硼

#### 收稿日期:2021-03-19;修回日期:2021-07-14

基金项目:陕西省重点研发计划资助项目(2018GY-130);西安市科技计划项目(2017074CG/RC037(XAGC007))。 第一作者简介:侯召堂(1980),男,山东单县人,高级工程师,主要研究方向为金属材料及无损检测。通信作者:成小乐(1976),

男,陕西西安人,教授,主要研究方向为金属基复合材料。E-mail:cxlcheng@sohu.com

和 $6 \times \times \times$ 系铝合金各自的优异特性进行结合,制备 出具有高强、耐磨及轻质等优异特性的B<sub>4</sub>C<sub>p</sub>/6061Al 复 合材料,在航空航天、轻质装甲和乏燃料储运等领域已 得到广泛应用<sup>[79]</sup>。

目前,国内外对碳化硼增强6×××系铝合金的 研究主要集中在材料的制备、界面反应和材料的性能 等方面。在材料制备方面,高占平等<sup>[10]</sup>采用中温热压 法成功制备了不同 B<sub>4</sub>C 质量分数(10%~40%)的 B<sub>4</sub>C/6061Al复合材料,结果表明:在热压过程中,复合 材料无杂质相生成。在界面反应方面, Park 等<sup>[11]</sup>采用 热等静压成型方法制备出了三明治结构的 B₄C/6061Al复合材料,与冷压-烧结成型方法相比,此 法可有效提高 B<sub>4</sub>C 增强相与 6061Al 基体的润湿性。 在力学性能方面,美国 Frage 等<sup>[12]</sup>选用 6061Al 粉和 B₄C 粉,成功制备出了力学性能优异且适用于乏燃料 储运所需的材料;Pyzik 等<sup>[13]</sup>采用球磨法将 5% 的 B<sub>4</sub>C 加入到6061Al中,经挤压处理后,材料的硬度较挤压 前提高了 62.5%。近来,一些学者通过对 7×××系 铝合金动态再结晶机理的研究,发现铝合金在热变形 过程中会发生组织演变进而影响其性能<sup>[14]</sup>。但目前 有关铝基复合材料在热变形过程中的微观组织的报道 相对较少,需要对碳化硼增强6×××系铝合金的热 变形组织演变进行研究<sup>[15]</sup>。

为了表征碳化硼增强 6061Al 基复合材料在不同 热变形条件(变形温度、应变速率和应变量)下的微观 组织演变特征,课题组采用控制变量法,通过热模拟试 验机对碳化硼增强 6061Al 基复合材料进行一系列的 等温压缩实验。实验结束后,对试件进行了金相分析, 并分别讨论了不同的热变形条件对碳化硼增强 6061Al 基复合材料微观组织演变的影响。

### 1 实验

#### 1.1 试样制备

等温压缩实验选用的复合材料中各元素和化合物 的质量分数为:Mg1%,Si0.6%,Cu0.17%,Ti1.3%, Mn0.16%,B<sub>4</sub>C10%(其中B<sub>4</sub>C颗粒尺寸大小范围为 10~20 µm),余量为Al。在等温压缩实验前,先将所 有试样作均匀化处理,然后沿轴向取样,按图1所示尺 寸制备压缩试样。

#### 1.2 热压缩试验

本实验采用 Gleeble-3500 热模拟试验机进行等温 热压缩实验。试验开始前,首先将热电偶焊接在试样 中部;然后将试样放入工作区夹紧;最后对工作区抽真 空处理,如图2所示。热压缩试验过程可以分为4步:



图 1 压缩试样尺寸 Figure 1 Dimensions of compressed sample

①加热阶段(以一定升温速率加热试样至预设温度); ②保温阶段(保温时长3 min);③压缩变形阶段;④淬 火阶段(变形结束后将试样迅速放入水中)。热压缩 试验过程如图3所示,试验方案如表1所示。为了保 证试样的平行度以及减小试样在压缩变形过程中与平 面压头之间的摩擦力,在试验开始前,需对试样的2个 端面进行预处理(打磨、抛光和润滑)。



图2 实验的准备

Figure 2 Test preparation

#### 表1 热压缩试验方案

Table 1 Thermal compression scheme

| 编号 | 变形温度/℃ | 应变速率/s <sup>-1</sup> | 应变量 |
|----|--------|----------------------|-----|
| 1  | 480    | 0.100                | 0.9 |
| 2  | 460    | 0.100                | 0.9 |
| 3  | 440    | 0.001                | 0.9 |
| 4  | 440    | 0.010                | 0.9 |
| 5  | 440    | 0.100                | 0.9 |
| 6  | 440    | 1.000                | 0.9 |
| 7  | 420    | 0.100                | 0.9 |
| 8  | 400    | 0.100                | 0.9 |
| 9  | 440    | 0.100                | 0.8 |
| 10 | 440    | 0.100                | 0.7 |
| 11 | 440    | 0.100                | 0.6 |
| 12 | 440    | 0.100                | 0.5 |



图3 试验过程

Figure 3 Test process

#### 1.3 微观表征

实验结束后,先用砂纸打磨试样的一个端面,直至端面无肉眼可见的划痕;然后用丝绸抛光布对端面进行抛光处理,抛光时间为15 min(为保证试样两端面的平行度,需对另一端面也进行打磨处理)。配制50%氢氟酸(HF)+50%蒸馏水的腐蚀剂,对试样待观察区进行腐蚀处理,腐蚀时间为30 s。最后,利用光学显微镜(OM)观察各组试样端面的中心位置,分析其微观组织特征。

#### 2 结果与讨论

# 2.1 变形温度对 $B_4C_p/6061 \text{ AI}$ 复合材料微观组织的 影响

图4为B<sub>4</sub>C<sub>p</sub>/6061Al复合材料在应变量为0.9、应 变速率为0.100 s<sup>-1</sup>、变形温度为400~480℃条件下 的金相组织图。当变形温度为400℃时,复合材料的 金相组织以发生变形的原始组织为主,存在少量的动 态再结晶晶粒(见椭圆标记 A<sub>1</sub>)。当变形温度为420 ℃时,动态再结晶晶粒有所增多且晶形较为圆润,晶粒 尺寸也有一定增大(见椭圆标记 B<sub>1</sub>),但复合材料内部 还存在少量的原始组织(见椭圆标记 B<sub>2</sub>)。当变形温 度为440℃时,复合材料内部原始组织与420℃相比进 一步减少,出现了大量动态再结晶晶粒,且晶粒形状呈 等轴状(见椭圆标记 C<sub>1</sub>)。当变形温度为460℃时,复 合材料金相组织与440℃时相比变化不大,复合材料内 部为等轴状的动态再结晶晶粒(见椭圆标记 D<sub>1</sub>),晶粒 尺寸无明显变化。当变形温度为480℃时,复合材料的 晶粒尺寸与460℃时相比明显增大(见椭圆标记 E<sub>1</sub>)。

综上所述,在应变量与应变速率给定的情况下,变 形温度对 6 × × × 系铝合金的软化机制有较大的影 响。当变形温度上升至 400 ℃后,6061Al 基复合材料 开始发生动态再结晶且伴有少量再结晶晶粒生成,这 是因为较低的变形温度很难激发原始晶粒的活性。当 变形温度持续升高至 440 ℃时,原子内部累积的热激 活能增多,在应力的共同作用下促使再结晶的形核速 度逐渐提升,晶核尺寸也不断增大。当变形温度超过 440 ℃时,6061Al 基复合材料动态再结晶的形核过程 已基本完成,且随温度的持续升高,再结晶晶粒不断长 大最终形成等轴晶。在整个过程中,6×××系铝合金 内部的软化机制随变形温度的升高而发生变化,从 400 ℃的动态回复过程逐渐转变为较高温度下的动态 再结晶过程<sup>[16-17]</sup>。



(d) 460 °C



图 4 不同变形温度下的微观组织 Figure 4 Microstructure at different deformation temperatures

# 2.2 应变速率对 $B_4C_p/6061 \text{AI}$ 复合材料微观组织的 影响

图 5 为  $B_4C_p/6061$  Al 复合材料在应变量为 0.9、变 形温度为 440 °C、应变速率为 0.001 ~ 1.000 s<sup>-1</sup>变形 条件下的微观组织。由金相照片可知,复合材料内部 均已发生动态再结晶。不同的是,应变速率越小, 6061 Al 基复合材料体内部发生的动态再结晶过程越 充分,且生成的再结晶晶粒数量越多。当应变速率从 0.001 ~ 1.000 s<sup>-1</sup>逐渐增大时,6061 Al 基复合材料发 生动态再结晶的形核率反而降低,晶粒尺寸也逐渐减 小(见椭圆标记 A<sub>1</sub>, B<sub>1</sub>, C<sub>1</sub>和 D<sub>1</sub>)。



(a) 0.001 s<sup>-1</sup>



(b) 0.010 s<sup>-1</sup>





图 5 不同应变速率下的微观组织 Figure 5 Microstructure at different strain rates

在应变量和变形温度确定的条件下,复合材料发 生动态再结晶的程度与变形时间有关<sup>[18-19]</sup>。应变速 率的大小决定了6061Al基复合材料变形时间的长短, 应变速率越大,达到相同应变量所需的变形时间越短, 所以,当应变速率为1.000 s<sup>-1</sup>时,复合材料的变形时 间最短,导致材料内部发生的动态再结晶过程不充分, 再结晶晶粒尺寸相对较小。应变速率为0.100 s<sup>-1</sup>时, B<sub>4</sub>Cp/6061Al复合材料内部变形晶粒已全部完成动态 再结晶;当应变速率大于0.100 s<sup>-1</sup>时,复合材料内部 还残留部分原始变形晶粒未发生动态再结晶;当应变 速率小于0.100 s<sup>-1</sup>时,复合材料内部动态再结晶晶粒 尺寸将会变大,所以可确定最有利于 B<sub>4</sub>Cp/6061Al复 合材料性能的动态再结晶应变速率为0.100 s<sup>-1</sup>。

2.3 应变量对  $B_4C_p/6061 \text{ Al}$  复合材料微观组织的影响

图 6 为  $B_4 C_p$ /6061Al 复合材料在变形温度为 440 ℃、应变速率为0.100 s<sup>-1</sup>和应变量为0.5~0.9 变 形条件下的微观组织。如图 6(a)所示,当应变量为 0.5 时,复合材料内部形成了动态再结晶亚晶晶粒(见 椭圆标记  $A_1$ )以及少量的动态再结晶晶粒(见椭圆标 记  $A_2$ );从图 6(b)和 6(c)可知,随着应变量的不断增 大,复合材料内部出现的动态再结晶晶粒也不断增多; 从图 6(d)可以看出,当应变量为 0.8 时,动态再结晶 晶粒较应变量为 0.5 时明显增多,但仍有大量再结晶 晶粒呈亚晶结构(见椭圆标记 D<sub>1</sub>),以及少量发生变形 的原始晶粒(见椭圆标记 D<sub>2</sub>);从图 6(e)可以看出,当 应变量为 0.9 时,复合材料内部晶粒已基本完成动态 再结晶,且晶粒细小(见椭圆标记 E<sub>1</sub>)。



(a) 0.5















综上,在变形温度和应变速率给定的条件下,随着 应变量的增大, $B_4C_p$ /6061Al复合材料的动态再结晶 程度也越大。这是因为随着应变量的不断增大,复合 材料内部原子的形变储存能增多,加快了动态再结晶 的形核速度;另外,复合材料的应变量越大,促使变形所 需的流变应力增大,动态再结晶的时间也越充足<sup>[20]</sup>。

### 3 结论

课题组研究了变形条件对  $B_4C_p/6061$  Al 复合材料 动态再结晶的影响,得出以下结论:

 1)变形温度对 B<sub>4</sub>C<sub>p</sub>/6061Al 复合材料的软化机 制有显著的影响。当应变量和应变速率一定的条件 下,变形温度越高,复合材料动态再结晶的形核效率越 高。由细晶强化理论可确定最有利于 B<sub>4</sub>C<sub>p</sub>/6061Al 复 合材料性能的动态再结晶变形温度为 440 ℃。

2) 应变速率的大小决定了材料发生变形所需时间的长短,进而影响  $B_4C_p/6061$  Al 复合材料微观组织的演变过程。当应变量和变形温度一定的条件下,应变速率越低,发生相同的应变量所用的时间越长,有利于  $B_4C_p/6061$  Al 复合材料动态再结晶的发生,所以可以确定最有利于  $B_4C_p/6061$  Al 复合材料性能的动态再结晶应变速率为 0.100 s<sup>-1</sup>。

3)应变量对 B<sub>4</sub>C<sub>p</sub>/6061Al 在热变形过程中的微观组织有很大的影响。当应变速率恒定时,应变量越大,复合材料的流变应力也将增大,其动态再结晶程度越高。所以当应变量为 0.9 时,复合材料内部已基本完成动态再结晶,生成了细小的动态再结晶晶粒。

#### 参考文献:

- [1] 张福豹,许晓静,罗勇,等.6×××系铝合金微金属化的研究进展 [J]. 材料导报,2012,26:384-388.
- [2] 王培,邵继鹏,李占国.6×××系铝合金薄板预时效工艺探索
  [J].铝加工,2015(3):19.
- [3] 李龙,夏承东,宋友宝,等. 铝合金在新能源汽车工业的应用现状

及展望[J]. 轻合金加工技术,2017,45(9):18-25,33.

- [4] 王蒙蒙,张德恩,卢锦德,等. Al-Cu-Mn 系新型铝合金热处理工艺 研究[J]. 热加工工艺,2013,42(6):160.
- [5] 王正军.碳化硼抗弹陶瓷研究进展[J]. 硅酸盐通报,2008,27
  (1):132-135.
- [6] 王正军.碳化硼抗弹陶瓷的制备方法及应用[J].中国粉体技术, 2008,14(3):56-59.
- [7] 周思君. B<sub>4</sub>C<sub>p</sub>/6063Al复合材料热变形行为研究[D]. 西安;西安 工程大学,2019:17-36.
- [8] 童攀,林立,王全兆,等.颗粒尺寸对 B<sub>4</sub>C 增强铝基中子吸收材料 界面反应与力学性能的影响[J].复合材料学报,2019,36(4): 927-937.
- [9] 朱伟,蔡晓兰,王子阳,等. B<sub>4</sub>C 增强 Al 基复合材料的研究进展 [J]. 材料导报,2016,30(增刊 1):479.
- [10] 高占平,王文先,李宇力,等. B<sub>4</sub>C 颗粒增强铝基复合材料微观形 貌和力学行为分析[J]. 热加工工艺,2012,41(20):91.
- [11] PARK J J, HONG S M, LEE M K, et al. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al-B<sub>4</sub> C composite material via hot isostatic pressing [J]. Nuclear Engineering and Design,2015,282:1-7.
- [12] FRAGE N, LEVIN L, FRUMIN N, et al. Manufacturing B<sub>4</sub> C-(Al, Si) composite materials by metal alloy infiltration [J]. Journal of Materials Processing Technology, 2003, 136(3):143.

- [13] PYZIK A J, BEAMAN D R. Al-B-C phase development and effects on mechanical properties of B4C/ Al derived composites[J]. Journal of the Ameriacn Ceramic Society, 1995, 78;305.
- [14] 陈学海,陈康华,董朋轩,等. 7085 铝合金的热变形组织演变及 动态再结晶模型[J].中国有色金属学报,2013,23(1):44-50.
- [15] 成小乐,袁建才,尹君,等. B<sub>4</sub>C<sub>p</sub>/6063Al板材等应变速率挤压模 具优化[J].塑性工程学报,2020,27(2):37-44.
- LIU X Y, PAN Q L, HE Y B, et al. Flow behavior and microstructural evolution of Al-Cu-Mg-Ag alloy during hot compression deformation
  [J]. Materials Science and Engineering: A,2009,500(1/2):150 154.
- [17] 孙亚丽,谢敬佩,郝世明,等.30% SiC<sub>p</sub>/Al 复合材料热变形及动态再结晶行为[J].粉末冶金材料科学与工程,2016,21(1):15.
- [18] HUANG X D,ZHANG H,HAN Y, et al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature
   [J]. Materials Science and Engineering: A, 2010, 527 (3):485 – 490.
- [19] 何克准.DC 铸造强韧型过共晶变形铝硅合金的组织与力学性能
  [D].沈阳:东北大学,2012:39.
- [20] LI J P, SHEN J, YAN X D, et al. Microstructure evolution of 7050 aluminum alloy during hot deformation [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2):189-194.

#### (上接第46页)

- [5] 陈国庆,柳峻鹏,张秉刚,等.硬质合金与钢电子束焊接接头缺陷 及断裂分析[J].焊接学报,2017,38(10):3.
- [6] MAI T A, SPOWAGE A C. Characterisation of dissimilar joints in laser welding of steel-kovar, copper-steel and copper-aluminium[J]. Materials Science and Engineering A,2004,374(1/2):224.
- [7] TSUJINO J, UEOKA T, FUJITA Y, et al. Ultrasonic butt welding of aluminum, copper and steel plate specimens[J]. Japanese Journal of Applied Physics, 1994, 33:3059.
- [8] MAGNABOSCO I, FERRO P, BONOLLO F, et al. An investigation of fusion zone microstructures in electron beam welding of copper – stainless steel[J]. Materials Science and Engineering A, 2006, 424 (1/2):163.
- [9] 苗玉刚,李春旺,赵慧慧,等.铜/钢复合接头旁路热丝等离子弧增

材特性分析[J]. 焊接学报,2019,40(5):95.

- [10] 张佳瑶. 软铁/铜复合弹带 TIG 堆焊工艺及界面研究[D]. 哈尔 滨:哈尔滨工业大学,2019:27.
- [11] AUWAL S T, RAMESH S, YUSOF F, et al. A review on laser beam welding of copper alloys[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1):476.
- [12] MAGNABOSCO I, FERRO P, BONOLLO F, et al. An investigation of fusion zone microstructures in electron beam welding of copperstainless steel[J]. Materials Science and Engineering A, 2006, 424 (1/2):164.
- [13] FABRITSIEV S A, POKROVSKY A S, NAKAMICHI M, et al. Irradiation resistance of DS copper/stainless steel joints fabricated by friction welding methods [J]. Journal of Nuclear Materials, 1998, 258/259/260/261/262/263:2031.