欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
张 园,史永芳,迮素芳,李 力.基于邻域相关性小波去噪的滚动轴承包络解调及故障分类[J].轻工机械,2014,32(3):
基于邻域相关性小波去噪的滚动轴承包络解调及故障分类
Envelope Demodulation and Fault Classification of Rolling Bearing Based on Neighborhood Correlation Wavelet De-Noising
  
DOI:IO. 3969/j. issn. 1005 -2895. 2014. 03. 004
中文关键词:  滚动轴承  邻域相关性  冗余第二代小波  包络解调  峭度  BP人工神经网络
英文关键词:rolling bearing  neighborhood correlation  redundant second generation wavelet  envelope demodulation  kurtosis  BP artificial neural networks
基金项目:
作者单位
张 园,史永芳,迮素芳,李 力 1.三峡大学科技学院机械电气学部湖北宜昌 430002:2.三峡大学机械与材料学院湖北宜昌 430002 
摘要点击次数: 1433
全文下载次数: 1677
中文摘要:
      将邻域相关性的冗余第二代小波应用于滚动轴承信号降噪,用Hilhert包络解调法提取的故障特征频率,比较不 同转速和载荷下的提取效果,提出包络幅值峭度指标,并将其输入BP神经网络进行故障诊断。结果表明:基于邻域相关 性的冗余第二代小波降噪方法能很好的抑制噪声,保留原信号的信息;降噪后的故障信号经过Hilbert包络解调能找到 特征频率及其倍频,其效果优于原始信号的包络解调分析。工况会影响分析效果,且速度对提取效果的影响大于载荷。 包络幅值峭度指标能很好区分不同工况的故障信号,结合BP人工神经网络诊断正确率为100%。
英文摘要:
      Rolling bearing vibration signals were de-noised based on neighborhood correlation and threshold value redundant second generation wavelet. then rolling bearings' fault feature frequencies were extracted by Hilbert envelope demodulation. and then feature extraction effect of different rotational speeds and loads were compared. Kurtosis of envelope amplitude was proposed to input into BP artificial neural networks to make faults diagnosis. The result shows that neighborhood correlation second generation wavelet de-noising method can well restrain the noise. and it can retain the original signal information. The fault feature frequency and its frequency doubling can be basically found on the Hilbert envelope demodulation of the de-noised signals. and the effect is prior to the original signal. Working condition can influence the analysis effect. and the effect of velocity on extraction result is more obvious than load. The kurtosis of envelope amplitude can well classify different working condition fault signals, and the diagnosis accuracy of kurtosis index combined with BP artificial neural networks is 100% .
查看全文  查看/发表评论  下载PDF阅读器
关闭