欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
朱莹莹,王宇嘉.求解复杂旅行商问题的混合粒子群算法[J].轻工机械,2015,33(3):
求解复杂旅行商问题的混合粒子群算法
Hybrid Particle Swarm Optimization Algorithm for Solving Complex TSP
  
DOI:I0. 3969/j . issn. 1005 -2895. 2015. 03. 011
中文关键词:  遗传算法  旅行商问题( TSP)  混合粒子群算法  粒子群算法  多样性
英文关键词:genetic algorithm  Travelling Salesman Problem ( TSP)  hybrid particle swarm optimization  particle swarm optimization  diversity
基金项目:国家自然科学基金资助项目( 61403249);上海市自然科学基金资助项目(IOZR1314000)
作者单位
朱莹莹,王宇嘉 上海工程技术大学电子电气工程学院上海201620 
摘要点击次数: 2171
全文下载次数: 1923
中文摘要:
      针对粒子群算法在解决组合优化时存在早熟和易陷入局部最优的问题,提出一种求解旅行商问题( TSP)的混合 粒子群算法。将粒子群算法与遗传算法结合,引入遗传算法中的交叉和变异操作,通过个体极值和群体极值的交叉以及 粒子自身变异的方式增加种群的多样性,避免粒子陷入局部最优,提高算法的局部搜索能力。仿真结果表明,新的混合 粒子群算法在解决TSP问题时具有较好的收敛性及优化效果。
英文摘要:
      A hybrid particle swarm optimization algorithm for solving TSP was proposed in this paper. The particle swarm optimization was combined with genetic algorithm because it was premature convergence and easily fell into local optimum solution for solving combinatorial optimization. The crossover and mutation operation in genetic algorithm was introduced into the particle swarm optimization. Increased the diversity of swarm by crossover and mutation between individual extremum and global extremum.avoided particles falling into local optimum and improved the local search ability of algorithm. The experiments show that the hybrid particle swarm optimization is effective to solve the TSP.
查看全文  查看/发表评论  下载PDF阅读器
关闭