何成伟, 茅健.基于直方图均衡化的PCA SIFT图像特征提取与匹配改进算法[J].轻工机械,2019,37(3):72-76 |
基于直方图均衡化的PCA SIFT图像特征提取与匹配改进算法 |
Improved Feature Detection and Matching Algorithm for PCA SIFT Image Based on Histogram Equalization〖ST〗〖HT〗〖KH*2D〗 |
|
DOI:10.3969/j.issn.1005 2895.2019.03.014 |
中文关键词: 计算机视觉 特征提取 SIFT算法 直方图均衡化 主成分分析法 |
英文关键词:computer vision feature extraction SIFT algorithm histogram equalization PCA |
基金项目: |
|
摘要点击次数: 1479 |
全文下载次数: 1296 |
中文摘要: |
为了克服SIFT算法运算量大、运算耗时长和实时性不强的缺点,课题组提出了基于直方图均衡化PCA SIFT算法,以增强
灰度图像的明暗对比度,增加匹配成功率,改进描述子生成方式,沿用主成分分析法(PCA)降低特征检测维度,减少耗时。仿真实验表明该算法有效地减少了
运算时间,并且一定程度上减少了不必要的特征点的匹配数量。新算法能有效减少运算量。 |
英文摘要: |
The SIFT feature extraction algorithm has large computation,the operation takes a long time,and the real time performance is not strong. In order
to enhance the contrast of gray images,increase the success rate of matching,improve the way of descriptor generation,and reduce the dimension of feature detection by using principal
component analysis (PCA),the research group proposed a PCA SIFT (principal components analysis SIFT)algorithm based on histogram equalization. The simulation results
show that the algorithm effectively reduces the operation time and to some extent reduces the number of unnecessary feature points matching. The new algorithm can effectively reduce the
computational complexity. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |