欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
邢旭朋.基于非线性扩散与图像配准的印刷品表面缺陷检测[J].轻工机械,2021,39(2):77-81
基于非线性扩散与图像配准的印刷品表面缺陷检测
Printed Product Surface Defect Detection Based on Nonlinear Diffusion and Image Comparison
  
DOI:10.3969/j.issn.1005 2895.2021.02.014
中文关键词:  印刷品表面缺陷检测  P M模型  图像差分  模板匹配
英文关键词:print surface defect detection  P M model  image difference  template matching
基金项目:国家自然科学基金青年项目(61701384)。
作者单位
邢旭朋 西安工程大学 机电工程学院 陕西 西安710048 
摘要点击次数: 758
全文下载次数: 901
中文摘要:
      针对目前工业印刷品表面缺陷检测时误判率高、检测效率较低以及缺陷区域信息有限等问题,笔者提出一种基于改进Perona Malik(P M)非线性扩散模型与图像差分模型配准的印刷品表面缺陷检测方法。该方法首先利用非线性扩散模型,在维持非缺陷区域平滑程度保持不变的情况下,对待测图像进行平滑处理,将原始图像与扩散后图像做差分运算以增强缺陷区域的对比度,从而得到差分图像;然后,将差分图像与标准模板图像进行配准,检测得到缺陷所在的区域的特征值,以便对印刷品印刷质量进行分析;笔者搭建了实验平台,来验证本方法的可行性。实验结果表明:该方法能够快速并且有效地将印刷品表面的缺陷检测出来,准确率高达99.97%。该项研究能够满足印刷品生产质量需求。
英文摘要:
      Aiming at the problems of high false positive rate, low detection efficiency and limited defect area information in the detection of industrial defects on surface defects, a detection method of surface defects of printed matter based on improving the Perona Malik (PM) nonlinear diffusion model and image difference model registration was proposed. Firstly, the nonlinear diffusion model was used to smooth the image to be measured while maintaining the smoothness of the non defective region. The original image and the diffused image were compared to enhance the contrast of the defect region, so as to obtain the difference image. Secondly, the difference image was registered with the standard template image to obtain the eigenvalues of the area where the defect was located.The obtained eigenvalues were used for the analysis of the print quality of the printed matter. An experimental platform was set up to verify the feasibility of the proposed method. The experimental results show that the method can detect the defects on the surface of the printed surface quickly and effectively, and the accuracy is up to 99.97%, which can meet the production quality requirements.
查看全文  查看/发表评论  下载PDF阅读器
关闭