欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
权伟1, 和丹1*, 杨鹏程1, 区瑞坚2.基于MOMEDA与BiLSTM的滚动轴承微弱故障识别方法[J].轻工机械,2023,41(2):57-65
基于MOMEDA与BiLSTM的滚动轴承微弱故障识别方法
Weak Fault Identification Method of Rolling Bearing Based on MOMEDA and BiLSTM
  
DOI:10.3969/j.issn.1005 2895.2023.02.009
中文关键词:  滚动轴承  多点最优最小熵解卷积  遗传算法  双向长短时记忆网络
英文关键词:rolling bearing  MOMEDA(Multipoint Optimal Minimum Entropy Deconvolution Adjusted)  genetic algorithm  BiLSTM(Bidirectional Long and Short Term Memory Network)
基金项目:陕西省科技厅自然科学基础研究计划 面上项目(2022JM 219)。
作者单位
权伟1, 和丹1*, 杨鹏程1, 区瑞坚2 1.西安工程大学 机电工程学院 陕西 西安710600 ]2.苏州微著设备诊断技术有限公司 江苏 苏州215200 
摘要点击次数: 288
全文下载次数: 167
中文摘要:
      针对传统的滚动轴承智能诊断模型计算效率低和准确率欠佳问题,课题组提出一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和双向长短时记忆(bidirectional long short term memory network,BiLSTM)网络相结合的滚动轴承故障诊断模型。该模型利用MOMEDA方法增强故障特征,并结合遗传算法(genetic algorithm,GA)对BiLSTM模型参数进行优化,实现滚动轴承智能、高效及鲁棒性诊断。利用该模型对经典轴承数据集以及牵引电机轴承故障数据集进行验证,平均准确率达到了99.63%,分别比传统卷积神经网络(convolutional neural network,CNN)、单层长短时记忆网络(long short term memory network,LSTM)、双向长短时记忆网络和最新的CNN LSTM模型高16.02%,9.98%,7.01%和5.65%,验证了该模型的有效性和优越性。
英文摘要:
      Aiming at the problems of low computational efficiency and poor accuracy of the traditional rolling bearing intelligent diagnosis model, a rolling bearing fault diagnosis model based on multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) and bidirectional long and short term memory (BiLSTM) network was proposed. The MOMEDA method was used in model to enhance the fault characteristics and the genetic algorithm (GA) was combined to optimize the BiLSTM model parameters to achieve intelligent, efficient and robust diagnosis of rolling bearings. The model was validated on the classical bearing dataset and the traction motor bearing fault dataset with an average accuracy of 99.63%, which was 16.02%, 9.98%, 7.01% and 5.65% higher than the conventional convolutional neural network (CNN), single layer long short term memory network (LSTM), bi directional long short term memory network (LSTM) and the latest CNN LSTM model, respectively, verifying the effectiveness and superiority of the model.
查看全文  查看/发表评论  下载PDF阅读器
关闭