陈晨1, 施展1, 迟玉伦2.AVMD Kriging砂轮寿命周期磨削性能在线监测方法[J].轻工机械,2023,41(3):88-99 |
AVMD Kriging砂轮寿命周期磨削性能在线监测方法 |
AVMD Kriging砂轮寿命周期磨削性能 在线监测方法 |
|
DOI:10.3969/j.issn.1005 2895.2023.03.014 |
中文关键词: 砂轮寿命周期磨削性能 声发射 变分模态分解 人工鱼群 Kriging模型 |
英文关键词:grinding wheel life cycle grinding performance acoustic emission VMD(Variational Mode Decomposition) artificial fish swarm Kriging model |
基金项目: |
|
摘要点击次数: 425 |
全文下载次数: 632 |
中文摘要: |
为了对砂轮寿命周期磨削性能进行特征提取与智能识别,课题组提出了一种改进的变分模态分解算法与Kriging模型相结合的砂轮寿命周期磨削性能识别方法AVMD Kriging。首先,通过人工鱼群算法和包络熵适应度函数来优化VMD,以解决VMD中本征模态函数分解个数k和惩罚因子α难以自适应确定的问题;再利用皮尔逊相关系数选取与原始信号相关性最高的本征模态函数并计算其样本熵值组成特征向量,将其输入Kriging模型进行砂轮寿命周期磨削性能识别;最后利用实验采集的声发射数据,将提出的AVMD Kriging方法与传统的KNN模型、Tree模型进行对比。结果表明:AVMD Kriging方法的识别准确率优于KNN模型和Tree模型,能有效提高砂轮寿命周期磨削性能的识别准确率,同时具有较好的泛化能力和鲁棒性。 |
英文摘要: |
For the problem of feature extraction and intelligent recognition of grinding wheel life cycle grinding performance, an improved variational modal decomposition method VMD combined with Kriging model was proposed to identify the grinding wheel life cycle grinding performance AVMD Kriging.First, the VMD was optimized by artificial fish swarm algorithm and envelope entropy adaptation function to solve the problem of difficulty in adaptively determining the number and penalty factors of eigenmode function decompositions in VMD.Then, the Pearson correlation coefficient was used to select the eigenmodal function with the highest correlation with the original signal and calculate its sample entropy value to form a feature vector, which was input to the Kriging model for grinding wheel life cycle grinding performance identification. Finally, using the experimentally collected acoustic emission data, the proposed AVMD Kriging method was compared with the traditional K nearest neighbor algorithm model and decision Tree model. The results show that the recognition accuracy of the AVMD Kriging method is superior to K nearest neighbor algorithm model and the decision Tree model.AVMD Kriging can effectively |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |