王丹, 胡卓焕, 袁成伟, 许佳寅.3D打印毛细芯与底座间隙对环路热管性能影响[J].轻工机械,2023,41(6):34-41 |
3D打印毛细芯与底座间隙对环路热管性能影响 |
Effect of Clearances between 3D Printed Wick and Heating Plate on Thermal Performance for LHP |
|
DOI:10.3969/j.issn.1005 2895.2023.06.005 |
中文关键词: 3D打印 复合毛细芯 环路热管 传热系数 热泄漏 |
英文关键词:3D printing composite wick LHP(Loop Heat Pipe) heat transfer coefficient heat leakage |
基金项目:国家自然科学基金(52105465)。 |
|
摘要点击次数: 522 |
全文下载次数: 396 |
中文摘要: |
为抑制环路热管(loop heat pipe, LHP)蒸发器中的热泄漏,课题组通过改变3D打印复合毛细芯与加热底座之间的间隙来解决该问题。毛细芯与加热底座间分别选取0,1和2 mm[KG*4/5]3种间隙组合方式组装环路热管,并通过实验研究间隙对环路热管传热性能的影响。结果表明:存在间隙时,启动时长均会因间隙的增大而延长;复合毛细芯蒸发层为200 μm、吸液层为100 μm、间隙为2 mm时,热泄漏的抑制最显著。此时,功率为180 W,壁面温度为96.7 ℃,传热系数为73 681 W/(m·K);而复合毛细芯蒸发层为100 μm、吸液层为200 μm时,间隙的增加对热泄漏的抑制效果不明显。综上,复合毛细芯对环路热管传热性能的影响可通过改变毛细芯与底座间隙距离来控制。 |
英文摘要: |
In order to reduce the heat leakage in the evaporator and improve the heat performance of loop heat pipe (LHP), the clearance between the 3D pringted composite wick and the heating plate was changed. LHP was assembled by three combined methods of the wick and the heating plate with no clearance, 1 mm clearance and 2 mm clearance respectively, and their start up and operating performance were experimentally studied. It was showed that the start up time of the LHP with clearance will be prolonged due to the increase of the clearance. The suppression of heat leakage was most significant,when the clearance was 2 mm, the composite wick evaporation layer was 200 μm, and transportation layer was 100 μm. At the same time, the power was 180 W, the evaporator wall temperature was 96.7 ℃, and the heat transfer coefficient was 73 681 W/(m·K). The increase in clearance had no significant inhibitory effect on heat leakage,while the composite wick evaporation layer of was 200 μm, and the transportation layer of was 100 μm. In conclusion, the influence of composite wick on the heat transfer performance of LHP can be controlled by changing of the clearance between the composite wick and the heating plate. |
查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |