欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
赵正阳1, 郭亮1*, 鲁文其2.短初级永磁同步直线电机推力波动优化[J].轻工机械,2024,42(5):51-58
短初级永磁同步直线电机推力波动优化
Optimization of Thrust Fluctuations in Short Primary Permanent Magnet Synchronous Linear Motor
  
DOI:10.3969/j.issn.1005 2895.2024.05.007
中文关键词:  永磁同步直线电机  帕累托蚁群优化算法  可变信息素挥发系数  多目标优化  定位力
英文关键词:PMLSM(permanent magnet linear synchronous machine)  Pareto ACO  variable pheromone volatility coefficient  multi objective optimization  detent force
基金项目:国家自然科学基金(51677172);国家自然科学基金(52277068);浙江省科技厅重点研发计划(2023C01243);浙江省科技厅重点研发计划(2023C01159)。
作者单位
赵正阳1, 郭亮1*, 鲁文其2 1.浙江理工大学 信息科学与工程学院 浙江 杭州310018 2.浙江理工大学 机械工程学院 浙江 杭州310018 
摘要点击次数: 21
全文下载次数: 14
中文摘要:
      带辅助极式短初级永磁同步电机理论上可通过优化电机结构,实现辅助极定位力与电枢定位力相互抵消,达到保持高推力的同时降低推力波动的目的。但永磁同步直线电机(permanent magnet linear synchronous motor,PMLSM)待优化参数多,其电磁非线性的特征增加了优化的难度和工作量。为提升优化效率,课题组提出了一种帕累托(Pareto)蚁群优化算法(ant colony optimization,ACO)。Pareto ACO采用可变信息素挥发系数替代传统的固定挥发系数,使全局搜索速度与局部搜索速度更快;通过与同类多目标算法的3种测试函数处理结果作比较,得出Pareto ACO的性能更优越;利用Pareto ACO对带辅助极式短初级永磁同步直线电机槽口宽度、辅助极宽度和永磁体宽度等结构尺寸进行多目标优化。优化结果表明该算法可有效节省永磁体材料,降低推力波动,实验验证了该算法的有效性。
英文摘要:
      The short primary permanent magnet synchronous motor with auxiliary pole type could theoretically achieve the mutual offset of auxiliary pole detent force and armature detent force by optimizing the motor structure, so as to achieve the purpose of reducing the high thrust fluctuation while maintaining high thrust. However, the characteristics of permanent magnet synchronous linear motor (PMLSM) with many parameters to be optimized and electromagnetic nonlinearity increased the difficulty and workload of optimization design. In order to enhance the optimization and design efficiency, a novel Pareto ant colony optimization algorithm (Pareto ACO) was proposed. The variable pheromone volatility coefficient was adopted instead of the traditional fixed volatility coefficients, which resulted in faster global exploration and local search. By compared the results with similar multi objective algorithms regarding the three test functions, the performance of Pareto ACO was superior. The Pareto ACO algorithm was used to carry out multi objective optimization of the structural dimensions of slots, auxiliary poles, and permanent magnets for short primary permanent magnet synchronous linear motors with auxiliary pole type. The optimization results show that the algorithm can effectively save the permanent magnet material and reduce the thrust fluctuation, and finally the experiment verifies the effectiveness of the algorithm.
查看全文  查看/发表评论  下载PDF阅读器
关闭