欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
库鹏博1,2, 朱怡琳1,2, 张守京1,2*.基于参数自适应VMD的滚动轴承故障特征提取[J].轻工机械,2024,42(5):74-81
基于参数自适应VMD的滚动轴承故障特征提取
Fault Feature Extraction of Rolling Bearing Based on Parameter Adaptive VMD
  
DOI:10.3969/j.issn.1005 2895.2024.05.010
中文关键词:  滚动轴承  特征提取  变分模态分解  固有模态函数  猎豹优化算法
英文关键词:rolling bearing  feature extraction  VMD(variational mode decomposition)  IMF(intrinsic mode function)  CO(cheetah optimization) algorithm
基金项目:西安市现代智能纺织装备重点实验室课题
作者单位
库鹏博1,2, 朱怡琳1,2, 张守京1,2* 1.西安工程大学 机电工程学院 陕西 西安710048 2.西安工程大学 西安市现代智能纺织装备重点实验室 陕西 西安710600 
摘要点击次数: 28
全文下载次数: 13
中文摘要:
      针对提取的滚动轴承故障特征信号易受复杂工作环境的影响以及变分模态分解(variational mode decomposition, VMD)参数依赖人为经验选择的问题,课题组提出了一种基于参数自适应的VMD的滚动轴承故障特征提取方法。首先,以原始信号经过VMD后的固有模态函数(intrinsic mode function,IMF)的包络谱熵作为适应度函数,采用猎豹优化(cheetah optimizer,CO)算法对分解阶数k、惩罚因子α进行自适应寻优;其次,基于峭度准则对各IMF分量进行重构;然后,对重构信号进行Hilbert包络谱分析从而提取故障特征,并通过滚动轴承故障仿真信号和实验信号经VMD和SSA VMD处理结果对比验证可行性。研究结果表明:该方法相比于经典VMD所得故障特征更为准确;在参数寻优时间方面CO算法相比麻雀搜索算法(sparrow search algorithm,SSA)提升了65%。课题组的研究具有一定工程应用价值。
英文摘要:
      Aiming at the problem that the fault feature signal extraction of rolling bearing was easily affected by complex working environment and the parameters of variational mode decomposition (VMD) were selected by human experience, a method of fault feature extraction of rolling bearing based on parameter adaptive VMD was proposed. Firstly, the envelope spectral entropy of the intrinsic mode function (IMF) of the original signal after VMD was used as the fitness function, and the cheetah optimizer (CO) algorithm was used to optimize the decomposition order k and penalty factor α adaptively; Secondly, the IMF components were reconstructed based on the kurtosis criterion; Then, Hilbert envelope spectrum analysis was performed on the reconstructed signal to extract fault features, and feasibility was verified through simulation signal and experimental signal. The research results show that this method is more accurate in extracting fault characteristics compared to classical VMD; In terms of parameter optimization,CO algorithm has increased by 65% compared to SSA.The research has certain engineering application value.
查看全文  查看/发表评论  下载PDF阅读器
关闭