欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
梅哲瑜1,2, 鲁玉军1*.基于改进混合遗传算法的齿轮轴柔性车间调度问题研究[J].轻工机械,2024,42(6):93-101
基于改进混合遗传算法的齿轮轴柔性车间调度问题研究
Improved Hybrid Genetic Algorithm for Gear Shaft Flexible Workshop Scheduling Problem
  
DOI:10.3969/j.issn.1005 2895.2024.06.013
中文关键词:  生产调度  柔性作业车间  GLR种群初始化策略  遗传算法  模拟退火算法
英文关键词:production scheduling  flexible work shop  GLR(Global Local Random ) population initialization strategy  GA(Genetic Algorithm)  SA(Simulated Annealing)
基金项目:浙江省重点研发计划(2022C01242)。
作者单位
梅哲瑜1,2, 鲁玉军1* 1.浙江理工大学 机械工程学院 浙江 杭州310018 2.浙江理工大学龙港研究院有限公司 浙江 温州325802 
摘要点击次数: 7
全文下载次数: 0
中文摘要:
      针对柔性作业车间调度复杂的问题,为缩短完工时间,课题组提出了一种基于模拟退火算法(simulated annealing,SA)的改进混合遗传算法。该算法进行搜索时,利用全局、局部和随机 (global local random,GLR)种群初始化策略来优化初始解,再基于工序顺序和机器分配2种交叉变异策略扩展种群内优质解的数量,最后在模拟退火操作中加入邻域结构进行优化,在避免传统遗传算法易陷入局部最优的同时,提高了寻优速度。应用课题组提出的改进混合遗传算法对某齿轮轴加工车间加工数据进行仿真对比实验,与传统遗传算法相比,生产效率提高了8.43%,证明了该改进混合遗传算法的有效性。
英文摘要:
      Aiming at the high complexity of the flexible job shop scheduling problem, the research group proposed an improved hybrid genetic algorithm based on simulated annealing (SA) in order to shorten the completion time. When searching by this algorithm, optimizes the quality of initial solution by GLR population initialization strategy, and the number of high quality solutions within the population is expanded based on two crossover and mutation strategies focusing on operation sequence and machine allocation. Finally, a neighborhood structure is added to the simulation annealing operation for searching and optimizing, so as to overcome the problem that traditional genetic algorithm is easy to fall into local optimal solution and slow iteration. The improved hybrid genetic algorithm proposed by the research group is used to conduct simulation and comparison experiment for the processing data of a gear shaft processing workshop. Compared with the traditional genetic algorithm, the production efficiency increased by 8.62%, which proves the effectiveness of the improved algorithm.
查看全文  查看/发表评论  下载PDF阅读器
关闭