欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
臧子怡, 李仁旺*.基于双目标博弈人工蜂群算法的分布式阻塞流水车间绿色调度[J].轻工机械,2025,43(4):96-104
基于双目标博弈人工蜂群算法的分布式阻塞流水车间绿色调度
Distributed Blocking Flow Shop Green Scheduling Based on Bi Objective Game Theoretical Artificial Bee Colony Algorithm
  
DOI:10.3969/j.issn.1005 2895.2025.04.014
中文关键词:  分布式阻塞流水车间绿色调度问题  双目标博弈  人工蜂群算法  动态权重机制  精英保存策略
英文关键词:EDBFSP(Energy aware Distributed Blocking Flow Shop Scheduling Problem)  bi objective game  ABC(Artificial Bee Colony)algorithm  dynamic weight mechanism  elite preservation strategy
基金项目:国家自然科学基金资助项目(51475434);浙江省2023 年度“尖兵”“领雁”研发攻关计划(2022C01SA111123) 。
作者单位
臧子怡, 李仁旺* (浙江理工大学 机械工程学院 浙江 杭州310018) 
摘要点击次数: 1
全文下载次数: 2
中文摘要:
      为了解决分布式阻塞流水车间绿色调度问题(Energy aware Distributed Blocking Flow Shop Scheduling Problem,EDBFSP)中的多目标优化,课题组提出了一种双目标博弈人工蜂群 (Bi objective Game Artificial Bee Colony,BGABC) 算法,以实现最大完工时间和总能耗的同步最小化。该算法结合博弈论思想,将完工时间和总能耗作为相互竞争的目标,通过动态权重机制和精英保存策略实现双目标的动态平衡和高质量解的保持;在算法中,工蜂负责邻域搜索和解更新,观察蜂选择优秀解并继续优化,侦查蜂则随机替换劣解以增加解的多样性。实验结果验证了该算法在双目标优化中的有效性,并显示了其在多工厂协同调度中的应用潜力。
英文摘要:
      In order to address the multi objective optimization challenge in the Energy aware Distributed Blocking Flow Shop Scheduling Problem(EDBFSP), the research group proposed a Bi objective Game Artificial Bee Colony (BGABC) algorithm to achieve simultaneous minimization of maximum completion time and total energy consumption. The algorithm combined the idea of game theory and took the completion time and energy consumption as competing objectives, and achieved the dynamic balance of the two objectives and the maintenance of high quality solutions through the dynamic weight mechanism and the elite preservation strategy. In the algorithm, worker bees were responsible for neighborhood search and solution update, observer bees selected excellent solutions and continued to optimize, and scout bees randomly replace poor solutions to increase the diversity of solutions. The experimental results validate the effectiveness of the algorithm in bi objective optimization and highlight its potential for application in multi factory collaborative scheduling.
查看全文  查看/发表评论  下载PDF阅读器
关闭