欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
赵建翊1, 郁磊彬2, 林伟赟3, 袁立力2, 王伟4.考虑效率多目标优化因子的异型条烟分拣机XGBoost控制方法[J].轻工机械,2025,43(5):77-81
考虑效率多目标优化因子的异型条烟分拣机XGBoost控制方法
XGBoost Control Method for Irregular Cigarette Sorting Machine Considering Multi Objective Optimization Factors of Efficiency
  
DOI:10.3969/j.issn.1005 2895.2025.05.010
中文关键词:  烟草机械  异型条烟分拣机  多目标优化因子  效率优化因子  XGBoost算法
英文关键词:tobacco machinery  irregular cigarette sorting machine  multi objective optimization factor  efficiency optimization factor  XGBoost algorithm
基金项目:
作者单位
赵建翊1, 郁磊彬2, 林伟赟3, 袁立力2, 王伟4 (1.中国烟草总公司浙江省公司 浙江 杭州310002 2.浙江省烟草公司宁波市公司 浙江 宁波315000 [JZ]3.上海烟草集团北京卷烟厂有限公司 北京101121 [JZ]4.江西中烟工业有限责任公司赣州卷烟厂 江西 赣州341001) 
摘要点击次数: 1
全文下载次数: 2
中文摘要:
      针对控制异型条烟分拣机时,单一的优化因子仅可实现对分拣机部分性能的控制,无法有效提高控制精度的问题,笔者提出了考虑效率多目标优化因子的异型条烟分拣机XGBoost控制方法。以分拣效率最大化和分拣能耗最小化为控制目标,设定分拣速度和分拣机流量波动适应能力为分拣效率的优化因子,设定瞬时功率和机械臂磨损量为分拣能耗的优化因子,分别构建了控制子目标函数;结合约束条件,采用XGBoost算法对分拣机运行过程中的分拣效率和分拣能耗进行了综合预测,计算其与实际值之间的偏差,通过多次迭代,使偏差最小,实现了对分拣机性能的提升。实验结果表明该方法在实际应用中能有效提高分拣效率和降低分拣能耗,且分拣结果的偏差率平均值为1.50%。
英文摘要:
      In response to the problem that a single optimization factor can only achieve partial performance control of the sorting machine when controlling the irregular cigarette sorting machine, and cannot effectively improve control accuracy, an XGBoost control method for irregular cigarette sorting machine considering multi objective optimization factors of efficiency was proposed. Maximizing sorting efficiency and minimizing sorting energy consumption were set as control objectives. The sorting speed and the adaptability of sorting machine flow fluctuations were set as optimization factors for sorting efficiency, and instantaneous power and mechanical arm wear amount were set as optimization factors for sorting energy consumption. Control sub objective functions were constructed separately. Based on the constraints, the XGBoost algorithm was used to comprehensively predict the sorting efficiency and sorting energy consumption during the operation of the sorting machine. The deviation between the predicted and actual values was calculated, and through multiple iterations, the deviation was minimized, achieving an improvement in the performance of the sorting machine. The experimental results show that this method can effectively improve sorting efficiency and reduce sorting energy consumption in practical applications, and the average deviation rate of sorting results is only 1.50%.
查看全文  查看/发表评论  下载PDF阅读器
关闭