欢迎访问《轻工机械》稿件在线采编系统!设为首页 | 加入收藏    
信息公告:  
文章检索:
稿件处理系统
期刊信息
  • 中国标准连:ISSN1005-2895
  • 续出版物号: CN 33-1180/TH
  • 主管单位:轻工业杭州机电设计研究院有限公司
  • 主办单位:轻工业杭州机电设计研究院有限公司、中国轻工机械协会、中国轻工业机械总公司
  • 社  长:刘安江
  • 主  编:黄丽珍
  • 地  址:杭州市余杭区高教路970号西溪联合科技广场4-711
  • 电子邮件:qgjxzz@126.com
理事单位          MORE>>
张淞皓, 易传龙, 张守京*.基于改进遗传算法的柔性作业车间动态调度[J].轻工机械,2025,43(5):96-104
基于改进遗传算法的柔性作业车间动态调度
Dynamic Scheduling of Flexible Job Shops Based on Improved Genetic Algorithm
  
DOI:10.3969/j.issn.1005 2895.2025.05.013
中文关键词:  柔性作业车间调度问题  动态重调度  混合驱动策略  改进遗传算法  Cubic混沌映射
英文关键词:FJSP(Flexible Job Shop Scheduling Problem)  dynamic rescheduling  hybrid driven strategy  improved genetic algorithm  Cubic chaotic map
基金项目:陕西省自然科学基金(2025JC YBMS 406)。
作者单位
张淞皓, 易传龙, 张守京* 西安工程大学 机电工程学院 陕西 西安710048 
摘要点击次数: 1
全文下载次数: 2
中文摘要:
      为应对动态调度车间由机器故障等动态扰动因素导致重调度的问题,课题组建立以最小化完工时间为优化目标的模型,并提出一种事件驱动与滚动时域优化混合的重调度方法,该方法能在每一个时域内及时对动态扰动事件进行检测。为了解决算法初始群质量不高的问题,在种群初始化阶段引入Cubic混沌映射;在交叉操作中,工序和机器的交叉分别采用POX(Precedence Operation Crossover)交叉和多点交叉的方式;在变异操作中,采用变异算子策略和最短加工时间机器的变异方法,加快了算法的收敛速度。实验结果表明:结合Cubic混沌映射生成的初始种群质量比传统遗传算法提高了42.67%;改进遗传算法相对遗传算法完工时间缩短了8.7%,在动态调度车间内具有可行性。
英文摘要:
      To address the situations caused by dynamic disturbances such as machine failures in dynamic scheduling workshops, a model was established with the optimization objective of minimum completion time.And a mixed rescheduling method combining event driven and rolling horizon optimization was proposed,which could timely detect dynamic disturbance events during each time period.To solve the problem of low initial population quality in the algorithm, Cubic chaotic map was introduced during the population initialization phase. In the crossover operation, the processes and machines were crossed using POX crossover and multi point crossover, respectively. In the mutation operation, mutation operator strategy and a method based on the machine with the shortest processing time were employed to accelerate the algorithm′s convergence speed.The experimental results indicate that the quality of the initial population generated with Cubic chaotic map improves by 42.67% compared to that produced by traditional genetic algorithms. Finally, through data analysis and simulation experiments involving right shifting and complete rescheduling, it is demonstrated that the improved genetic algorithm reduces completion time by 8.7% compared to the previous version, and displays feasibility in dynamic scheduling workshops.
查看全文  查看/发表评论  下载PDF阅读器
关闭